
TRANSFER FUNCTION APPROACHES 

Transfer functions are downscaling techniques that rely upon the statistical relationships among 

the large scale predictors and local scale predictands. They are regression based downscaling 

techniques that are simple and requires very less computation compared to other methods.  The 

regression based methods however are constrained to the places wherein properly predictor-

predictand relationships are established. The transfer function techniques can however be 

different and depends on the mathematical transfer function, predictor variables, or statistical 

fitting procedure used. The methods can be linear and non-linear regression, artificial neural 

networks, canonical correlation, and principal component analysis or independent component 

analysis. 

Jeong et al., 2012 compared three linear models (multiple linear regression (MLR) with ordinary 

least squares (OLS) estimates, robust regression and ridge regression) and one non-linear model 

(artificial neural networks (ANNs)), to determine the best suited transfer function in statistical 

downscaling (SD) models for the temperature (daily maximum and minimum) and precipitation 

(occurrence and amount of rainfall). 

Regression equations are used to establish predictor-predictand relationships in transfer 

functions, which uses linear relationships and non-linear relationship, classified as linear transfer 

functions and Non-linear transfer functions (Hadipour et al., 2016). 

Trigo & Palutikof, 1999 developed transfer functions to predict temperature (minimum and 

maximum) at local scales, from the GCM outputs using linear ANN models and non-linear ANN 

models. The performances of non-linear ANN models were assessed to find out their advantages 

over non-linear models.  

The determination of the most appropriate transfer function for a particular downscaling problem 

is the most important step in Statistical Downscaling using transfer functions. Linear transfer 

functions are quite simpler than the complex non-linear functions and for this reason, most 

statistical downscaling studies uses linear transfer functions to model the relationship between 

AOGCM predictors and local predictands. Also linear transfer functions that are calibrated 

separately for different seasons or months has shown better results as compared to annually 

calibrated models. Quite contrary to this, several other studies shows that linear transfer 



functions fails to capture the predictor-predictand in statistical downscaling relationship 

appropriately, and suggests using complex non-linear transfer functions. The advantage of non-

linear transfer function over linear transfer functions are that, non- linear transfer functions are 

not limited by the linearity of the predictor-predictand relationship.  

The Artificial Neural Networks (ANNs) are non-parametric transfer functions with their main 

advantage that they can establish a strong predictor-predictand relationship in downscaling using 

statistical methods. At the same time, ANN has drawbacks such as; it can get trapped in the local 

minima and the selection of model architecture/training algorithm. There are chances of over 

fitting, which can be avoided if sample sizes are large enough. ANNs however requires high 

operational costs and are very complex in nature (Jeong et al., 2012).  

Ghosh & Mujumdar, 2006 combined weather typing and transfer function methods, for 

downscaling mean sea level pressure (MSLP), using principal component analysis, fuzzy 

clustering, and linear regression along with introducing a seasonal component to the model to 

project monthly precipitation over Orissa. This method, based on linear regression and fuzzy 

clustering is comparatively simple in terms of computation. Fuzzy clusters have an advantage 

over the limitations of the rigidity of hard clusters. The use of fuzzy cluster is demonstrated later 

in this chapter. 

Ghosh & Mujumdar, 2007 states, downscaling using transfer functions are the most popular 

methods of downscaling. A number of methods are used including linear and nonlinear 

regressions, artificial neural network, fuzzy rule-based system, support vector machine, 

analogue methods. The methods differ according to the choice of mathematical transfer 

function, predictor variable, and statistical fitting procedure chosen. 

Chen et al., 2014 used quantile mapping method (transfer function method) to downscale 

monthly precipitation in two steps. First, the transfer function was derived by fitting the 

first and third order polynomials the observed station and the precipitation simulated by 

the climate model for the reference period. Secondly the transfer functions were used to 

downscale the climate model simulated monthly precipitation for the future or validation 

period. They also observed that the transfer function’s ability to reproduce the probability 

distribution of the monthly precipitation as well as the correcting the bias of the grids and 

matching them. 



 

 

The following example is taken from the book, ‘Floods in a changing climate: Hydrologic 

modeling’, by Mujumdar & Nagesh Kumar, 2010, which shows the transfer function 

approach through linear regression downscaling technique. 

A transfer function approach for projection of future monthly precipitation based on fuzzy 

clustering and linear regression is explained through an example for the Orissa meteorological 

subdivision, India, with reanalysis data of MSLP as predictor and observed precipitation as 

predictand, from (Ghosh & Mujumdar, 2006). Gridded MSLP data used in the downscaling are 

obtained from NCEP reanalysis (E Kalnay, M Kanamitsu, R Kistler, W Collins, D Deaven, L 

Gandin, M Iredell, S Saha, G White, J Woollen, Y Zhu, M Chelliah, W Ebizusaki, W Higgins, J 

Janowiak, K C Mo, C Ropelewski, J Wang, A Leetmaa, R Reynolds, Roy Jenne, 1995). Monthly 

average MSLP outputs from 1948 to 2002 were obtained for a region spanning 15–25◦ N in 

latitude and 80–90◦ E in longitude that encapsulates the study region. Table 1 gives a list of 

GCMs with available scenarios used in the study. 

Solution: 

A regression relationship is established between NCEP reanalysis data for circular patterns and 

observed precipitation which is used to project future precipitation from GCM projections. The 

method consists of Principal Component Analysis (PCA), fuzzy clustering and linear regression 

with seasonality terms. The Figure 1 shows the downscaling based on Fuzzy clustering. 

Step 1: Interpolation and standardization 

The GCM grid points and NCEP grid points does not overlap and thus to find out the GCM 

output values at NCM grid points, interpolation is required, carried out with linear inverse square 

procedure using spherical distances. This interpolation will result in systematic biases in the 

mean and variance of GCM predictors, reduced by employing standardization. Standardization 

consists of subtracting the mean and then dividing it by standard deviation of the predictor 

variable for a baseline period of 1960-1990, for the NCEP/NCAR as well as GCM outputs.   



 

 

Table 1: GCMs and the scenarios used 

GCM Scenario used 

CCSR/NIES coupled GCM A1, A2, B1, B2 

Coupled global climate model (CGCM2) IS92a, A2, B2 

HadCM3 IS95a, (GHG + ozone + sulphate), A2 

ECHAM4/OPYC3 IS92a, A2, B2 

CSIRO-MK2 (IS92a + sulphate), IS92a, A1, A2, B1, B2 

 

 

Step 2: Preprocessing – PCA 

Pre-processing involves application of PCA and fuzzy clustering to the predictors before they are 

actually used in the downscaling model (PCA has been explained in the Data preprocessing 

section). PCA when applied on the 25 NCEP grid point predictors, showed that the 98.1% 

variability is caused by the first ten Principal Components, thus the first ten components are 

selected to model the stream flow.  

 

Step 3: Preprocessing – Fuzzy clustering 

Fuzzy clustering classifies the PCs into different classes or clusters and a membership value or 

rank is given to every data point. The parameters used in this step are number of clusters (c) and 

fuzzification parameter (m). The fuzzification parameter (m) controls the degree of fuzziness of 

the PCs after classification. The fuzzification is the degree of overlap between the clusters. The 

parameters for fuzzy clustering are decided according to the cluster validity indices, namely 



fuzziness performance index (FPI) and normalized classification entropy (NCE). The FPI 

determines the fuzziness caused by the different classes. 

 

Figure 1: Fuzzy Clustering based downscaling (Source: Ghosh & Mujumdar, 2007) 
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𝜇𝑖𝑡 is the membership in cluster ‘i’ of the PCs at time t. NCE determines the degree of 

disorganization generated by a given number of classes as: 
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The equations (1) and (2) are used to optimize the number of classes/clusters. Here, FPI was 

obtained as 0.25 for m= 2.0 and c= 2. 

 

Step 4: Linear regression 

In this step, monthly precipitation is modeled with PCs, their membership values in each cluster 

and the cross product of membership values and PCs. A seasonality term is introduced to 

represent the seasonality. The linear regression equation is given by: 
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Where, 

 𝑃𝑡: Precipitation at time ‘t’ 

𝑝𝑐𝑘𝑡: kth PC of the CP at time ‘t’ 

𝜇𝑖𝑡: Membership in cluster ‘i’ of the PCs at time ‘t’  

K: number of PCs used 

i: number of clusters 

 𝛽𝑖, 𝛾𝑘, 𝜌𝑖𝑘: coefficients of 𝜇𝑖𝑡, 𝑝𝑐𝑘𝑡 and their product terms respectively 



C: constant 

In each cluster, membership values 𝜇𝑖𝑡 are allocated to the different points, on the basis of fuzzy 

c-means algorithm. Seasonality is introduced in the form of ‘p’, where the value of p represents 

the serial number of the month within a year, i.e., p = 1, 2, ...12. 

Step 5: Validating the regression 

For a regression model, the goodness of fit is the correlation coefficient (r) between the observed 

and the predicted variables (here, precipitation). For validation, k-fold cross validation is adopted 

(k=10), and r value was obtained as 0.94 for running the model and 0.922 for testing the model. 

The  Nash and Sutcliffe (1970) coefficient, which was also used to test the goodness of fit of the 

model. The  Nash and Sutcliffe (1970) coefficient which lies between 0 and 1, is given by, 
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Where, 

𝑃𝑜𝑡: Observed precipitation at time ‘t’ 

𝑃𝑝𝑡
̅̅ ̅̅ : Predicted precipitation at time ‘t’ 

𝑃𝑜: Mean observed precipitation  

Here, the value of E was obtained as 0.83, which is satisfactory. 

 

Step 6: Results for projection 

The future projection of precipitation was obtained for wet period (JJAS) and dry period was 

obtained separately as shown in the Figure 2. It is found that the model underestimates the inter-

annual variability of monsoon to a large extent. This is a common drawback of regression 

models. For the current scenario, the wet period precipitation was found to be slightly increased 

and dry period precipitation is heavily decreased. 

 



 
Figure 2: Rainfall for wet and dry periods with CCSR/NIES-B2 projection (Source: Ghosh 

& Mujumdar, 2007) 
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