
 DYNAMICAL DOWNSCALING  

Introduction: 

The impact of climate change is far-flung than it actually appears. It coaxes even the smallest of 

the natural ecosystems, environment and economy. Projecting the future climate, especially 

regional climate is thus extremely important in crafting the socio-economic policies of the 

particular country, state or region (Xu et al., 2019). The General Circulation Models (GCMs) 

helps to interpret and foresee the climate variability and changes, including the forecasting of the 

hydrologic extremes (Chen et al., 2018). However, the GCM operates on a coarse resolution and 

it is important to convert this to a regional/local climate process resolution and for this we 

depend on different downscaling methods, categorized as Statistical downscaling, Dynamical 

downscaling, and Hybrid Dynamical-Statistical downscaling methods, which are already listed 

and discussed in the previous sections. The GCMs also fails to capture the regional aspects such 

as local orography, land-sea contrast, small scale features such a convective cells, etc. and 

predominates large scale condition alone. This makes it difficult for GCMs to predict climate 

change and variability at regional/local scale. The high computations for an extended period of 

time make it difficult for the simulations to take place. This disadvantage of GCMs can be 

overcome by the use of a GCM with regional refinements also called as Regional Climate Model 

(RCM). These models also require high resolution computing facility, but less than that 

compared to the GCM itself. RCMs are thus employed for comparatively smaller regions with 

considerably higher resolution to simulate regional climate change and variability. The 

simulations in the RCMs are outputs from GCMs, and thus controlled by GCM data using 

several mathematical equations. This approach of using a GCM tied with a computationally 

lower model is known as Dynamical Downscaling (Feser et al., 2011). 

Statistical downscaling methods primary works by establishing a statistical relationship between 

GCM outputs and local climate variables, which does not change with time (Meenu et al., 2013). 

These methods unfortunately fail to capture the interactions not recorded in the past observations 

and are also inappropriate to use in areas where the interaction between the large scale climate 

variables and local observations are equivocal or insignificant (Xu et al., 2019). Quite contrary to 

this, dynamical downscaling methods uses a Regional Climate Model (RCM), integrated with a 

GCM, providing initial and lateral boundary conditions for the RCM, which in turn generates 



regional climate data related to the climate change projections gaining higher resolution at 

smaller scales (Bao et al., 2015; Xu et al., 2019).  

Role of RCMs in Dynamical Downscaling:  

RCMs models  are developed based on physical principles of fluid mechanics (Gooré Bi et al., 

2017; Xu et al., 2019). Initially developed for mesoscale forcings, RCMs found their way into 

dynamical downscaling in the late 1980s (Xue et al., 2014). RCMs when applied to an area of the 

globe, gives a detailed account of the climate information for better resolution offers better 

representation of physical operations at finer scales (10 to 50 kms), as they can take into account 

the topography (mountains, hills), land-sea distribution (coastal lines), land-surface interactions 

(clouds), and land water discontinuities (lakes and streams) (Bao et al., 2015; Gooré Bi et al., 

2017).  

   

 

Figure 1: Flowchart of Dynamical downscaling method. Dotted lines indicates assimilation of 

the observation data (Rostkier-Edelstein et al., 2014). 

The RCMs originated from meso-scale atmospheric models, initially used for reproducing past 

climate scenarios are now used for future climate projection generating high resolution data for 

hydrological assessments. Such applications provides us with lateral atmospheric boundary 



conditions (LBC), initial surface conditions and even surface boundary conditions like the sea 

surface temperature (SST) and sea ice from the analysis of observed data, Atmospheric GCMs 

(AGCMs), coupled Atmospheric-Ocean GCMs (AOGCMs), or reanalysis data sets (eg: NCEP-

NCAR global reanalysis). Given the wide applications in dynamical downscaling, it is important 

to understand RCMs and how they improve the efficiency of dynamical downscaling in 

projecting the climate or adding more climate data at various scales, rather than just imposing the 

LBCs obtained from GCMs. Hypothetically, RCMs should simulate the coarse characteristics of 

the GCM outputs and reanalyses data that are used in the RCM and add more data at finer scales. 

However it is evident that there are wide gaps between our understanding of the use of coarse 

scale data and include data at finer scales, and to use this for many applications. Some of the 

studies hint that the RCMs are applied beyond their real downscaling ability.  

Even though the terminology of Regional Climate models implies modeling and the definition 

given for RCM in American Meteorological Society states the same, most RCMs were not 

performing any climate predictions at regional levels. On the other hand, GCMs are only used 

for climate predictions. It is important to understand that the climate prediction is different from 

climate downscaling, such that the term downscaling indicates climate statistics, on the basis of 

the average of the climate system over a period of a month or more. Temporally RCMs operates 

at various scales, from intra-seasonal to seasonal. RCM has a huge advantage that its higher 

resolution makes it possible to manage critically important climate processes such as clouds and 

land surface processes sensibly, particularly as RCMs can allow clouds into their resolution to 

eliminate the huge parameterization issues. Detailed analysis proves that improved information 

over mountains and coastal regions will enable RCM to reproduce mesoscale processes and high 

resolution climate characteristics. However, there is no guarantee on how long RCM will persist, 

as GCMs with higher resolutions are achievable because of the ever-growing computational 

power. The life of RCM will depend on the efficiency it has in the dynamical downscaling. The 

simulations in RCM are highly affected by the factors such as domain size and location, both 

horizontal and vertical resolution, the quality of the large scale forcing data and physical 

processes involved (Xu et al., 2019).  

 

 



 

Figure 2: the geographical domain that represents the large area and the RCM nesting zone. The 

dotted lines indicate the nesting zone in which topography, sea ice (white area) and open water 

(grey area) is shown (Denis et al., 2002).  

 

One of the major problems in dynamical downscaling is the unavailability of data available for 

validation for the small scale features. The global reanalyses does not have small scale features 

and thus low resolution global reanalyses cannot be used as climate references. To overcome this 

particular problem, a nested approach was developed by Denis et al., 2002, where in a large 

domain was used to generate a set of high resolution data, through which a low resolution data 

was obtained by filtering high frequency information. This approach was named as the ‘Big 

Brother experiment’. The filtered, low resolution data was then used to run a nested RCM with 

same operations and physical processes over a small domain. The ability of the RCM in 

reproducing the filtered fine resolution characteristics, serves as the bench mark to evaluate the 



performance of the RCM in dynamical downscaling. Even though this experiment eliminates the 

problem with having only high resolution validation data, one major concern is that the nested 

RCM does not exemplify the real world processes, as it only generates features in the model with 

the same operations and physical processes. An RCM to be efficient in dynamical downscaling 

needs to provide realistic simulations/predictions (Xue et al., 2014). 

 

 

Figure 3: Flow chart of the Big brother experiment. The rectangular shape indicates models and 

the oval shape indicates their data sets. The diamond shape depicts the validation of the regional 

scale features against that of GCM data sets. The IC and LBC are spatially filtered such that 

smaller scales are removed (Denis et al., 2002). 

 

The traditional dynamical downscaling (TDD): 

The traditional dynamical downscaling is the method developed by Dickinson, 1989, where he 

used an RCM to check the high resolution climate. The RCM was embedded with a GCM and 

only covered a small region on earth’s surface. The RCM was run by the GCM outputs as initial 

and lateral boundary conditions. This method is the oldest and now called as the traditional 

downscaling method. TDD has its applications in various fields from meteorology, hydrology, 



and atmospheric chemistry to air quality. Regardless of its wide usage, climate models are 

restrained by the systematic biases that deteriorate the quality in projecting the climate in 

dynamical downscaling and create high levels of uncertainties. TDD method, however, cannot 

curb this problem and it marks one of the limitations of the method (Xu et al., 2019). Despite its 

various shortcomings TDD method has been widely used for climate simulation projects the 

Regional Climate Model Inter-comparison Project for Asia (RMIP), Ensembles-Based 

Predictions of Climate Changes and Their Impacts (ENSEMBLES), North American Regional 

Climate Change Assessment Program (NARCCAP), and Coordinated Regional Downscaling 

Experiment (CORDEX), along with various combinations of GCMs and RCMs, called as 

ensemble simulation. Almost all GCMs are affected by the systematic biases and they are carried 

to the RCMs through the lateral boundary conditions in TDD thus degrading the downscaled 

simulations. Various studies shows that systematic biases effect the accuracy of the estimation of 

values of the variables such as precipitation, temperature, moisture content, etc., by either 

underestimating or overestimating them as compared to other dynamical downscaling methods 

(Xu & Yang, 2012). 

Pseudo global warming (PGW) method: 

The climate change has led to the increase in the concentration of greenhouse gases all over the 

globe. To project the response of climate to the increased GHG concentrations, pseudo global 

warming method was developed. In this method, lateral boundary conditions (LBCs) of RCM are 

developed by adding the projected change in GCM to the reanalysis data. 

𝐵𝐶𝐹 = 𝑅𝐴𝐻 + 𝐺𝐶𝑀̅̅ ̅̅ ̅̅
𝐹 − 𝐺𝐶𝑀̅̅ ̅̅ ̅̅

𝐻 

Where,  𝐵𝐶𝐹: constructed RCM LBC at 6 hour intervals for the future  

  𝑅𝐴𝐻: 6-hourly reanalysis data over historical periods 

  ‘¯¯’: represents the climatological mean  

      Subscripts H, F: indicates historical and future periods respectively   

      𝐺𝐶𝑀̅̅ ̅̅ ̅̅
𝐹 − 𝐺𝐶𝑀̅̅ ̅̅ ̅̅

𝐻: mean climate change between the future and historical periods 

computed with monthly data. 



The lateral boundary conditions thus computed have a base climate that is obtained from 

reanalysis data and are free from GCM biases on dynamical downscaling. The single GCM data 

of the equation can be replaced by a multi-GCM ensemble for the purpose of uncertainty 

reduction, those usually single GCMs induces on RCMs. This helps in improved simulations of 

the future climate. Apart from climate predictions, PGW methods are useful in identification and 

attribution studies. To identify external forcings, internal climate variabilities are considered as 

noise. The levels of changes brought out by the external forcings are weak as compared to that of 

internal forcings thus it is difficult to differentiate their effects. The external forcing signal can be 

identified by conducting two dynamical downscaling simulations with LBCs framed using PGW 

method. The simulations of two dynamical downscaling carries similar internal climate 

variability transferred through LBCs to the RCMs. Internal variability is then eliminated by 

finding out the difference between the two dynamical downscaling, which keeps the external 

forcing signals. The constraints of the PGW method are intrinsic to the framing of the LBCs (Xu 

et al., 2019). 

REFERENCES: 

Bao, J., Feng, J., & Wang, Y. (2015). Dynamical Downscaling Simulation and Future Projection 

of Precipitation over China. Journal of Geophysical Research: Atmospheres, 175(4449), 

238. https://doi.org/10.1038/175238c0 

Chen, L., Ma, Z., Li, Z., Wu, L., Flemke, J., & Li, Y. (2018). Dynamical Downscaling of 

Temperature and Precipitation Extremes in China under Current and Future Climates. 

Atmosphere - Ocean, 56(1), 55–70. https://doi.org/10.1080/07055900.2017.1422691 

Denis, B., Laprise, R., Caya, D., & Côté, J. (2002). Downscaling ability of one-way nested 

regional climate models: The Big-Brother Experiment. Climate Dynamics, 18(8), 627–646. 

https://doi.org/10.1007/s00382-001-0201-0 

Dickinson, R. E. (1989). A Regional Climate Model for the Western United States. Climate 

Change, 383–384. 

Feser, F., Rrockel, B., Storch, H., Winterfeldt, J., & Zahn, M. (2011). Regional climate models 

add value to global model data a review and selected examples. Bulletin of the American 

Meteorological Society, 92(9), 1181–1192. https://doi.org/10.1175/2011BAMS3061.1 

Gooré Bi, E., Gachon, P., Vrac, M., & Monette, F. (2017). Which downscaled rainfall data for 

climate change impact studies in urban areas? Review of current approaches and trends. 

Theoretical and Applied Climatology, 127(3–4), 685–699. https://doi.org/10.1007/s00704-

015-1656-y 

Meenu, R., Rehana, S., & Mujumdar, P. P. (2013). Assessment of hydrologic impacts of climate 

https://doi.org/10.1038/175238c0
https://doi.org/10.1080/07055900.2017.1422691
https://doi.org/10.1007/s00382-001-0201-0
https://doi.org/10.1175/2011BAMS3061.1
https://doi.org/10.1007/s00704-015-1656-y
https://doi.org/10.1007/s00704-015-1656-y


change in Tunga-Bhadra river basin, India with HEC-HMS and SDSM. Hydrological 

Processeses, 27(11), 1572–1589. https://doi.org/10.1002/hyp.9220 

Rostkier-Edelstein, D., Liu, Y., Wu, W., Kunin, P., Givati, A., & Ge, M. (2014). Towards a high-

resolution climatography of seasonal precipitation over Israel. International Journal of 

Climatology, 34(6), 1964–1979. https://doi.org/10.1002/joc.3814 

Xu, Z., Han, Y., & Yang, Z. (2019). Dynamical downscaling of regional climate: A review of 

methods and limitations. Science China Earth Sciences, 62(2), 365–375. 

https://doi.org/10.1007/s11430-018-9261-5 

Xu, Z., & Yang, Z. L. (2012). An improved dynamical downscaling method with GCM bias 

corrections and its validation with 30 years of climate simulations. Journal of Climate, 

25(18), 6271–6286. https://doi.org/10.1175/JCLI-D-12-00005.1 

Xue, Y., Janjic, Z., Dudhia, J., Vasic, R., & De Sales, F. (2014). A review on regional dynamical 

downscaling in intraseasonal to seasonal simulation/prediction and major factors that affect 

downscaling ability. Atmospheric Research, 147–148, 68–85. 

https://doi.org/10.1016/j.atmosres.2014.05.001 

 

https://doi.org/10.1002/hyp.9220
https://doi.org/10.1002/joc.3814
https://doi.org/10.1007/s11430-018-9261-5
https://doi.org/10.1175/JCLI-D-12-00005.1
https://doi.org/10.1016/j.atmosres.2014.05.001

